
'ZOr

Q '7217 .11 '2 ~ j~~j

TECNMC EI~.

IN T MIU t' ''

- fTP EONOMICS ERIES-1 M.4
* I *." fl

- I ~ -. ,4 , SIA FORD'',C-r *FOR N*.* *.-*'-*

11 1
4~ ~~~~~4 ': iCt::fPP i' ,>VRI1"m t

4.' 1 ~~~jr~r~~eq" -ip ~ ODC E E T
2t4** f

wv~4~ 41



REPEATED GAMES WITH FINITE AUTOMATA

by

Elchanan Ben-Porath

Technical Report No. 515

August 1987

A REPORT OF THE
CENTER FOR RESEARCH ON ORGANIZATION EFFICIENCY

STANFORD UNIVERSITY
CONTPACT NOOO14-86-K-0216

United States Office of Naval Research

THE ECONOMICS SERIES

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES
Fourth Floor, Encina Hall

Stanford University
Stanford, California

943O5

U -

:4vaO MAMW O



Aocession Foc

NTIS RA&I
DTIC TAB
Uniannounced _UfluflfOunced

REPEATED GAMES WITH FINITE AUTOMATA (--y
By__

byDi st ribution/by Availability Codes

A" ajnd/or

Elchanan Ben-Porath t pecial

1. Introduction

---In this paper -w examine< the set of equilibrium payoffs in a

repeated _i2e when there are bounds on the complexity of the strategies

that players may select.

- The interest in putting such bounds comes from the limited computa-

tional abilit- of humans and devices used by humans,(see Simon [1957,

1972]). 'For example most of the strategies in a repeated game cannot be

implemented by any computer.

It is important to distinguish between the complexity of a strategy

and the complexity of the process of selecting a strategy. -We-wi±I-not

deal with the selection process directly. We-w4A4 assume that the limi-

tation of a player is such that he can consider all the strategies below

a certain level of complexity. A possible interpretation is that the

players' abilities are unbounded buA they use bounded devices to imple-

ment their strategies (secretaries, or computers). . .

* This work was partially supported by Office of Naval Research Grant

NOOO-14-86-K-0216 at the Institute for Mathematical Studies in the
Social Sciences, Stanford University, Stanford, California. This work
is based on my M.S. thesis. My advisor, Professor Abraham Neyman
introduced me to the topic and guided me. I owe him many thanks.
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-' We use the notion of a finite automaton to define a complexity

measure on the strategies. A finite automaton is a machine that

contains a finite number of states. One of these states is the initial

state. The machine has an action function and a transition function.

The action function determines the one-shot game strategy that is played

at each state. The transition function specifies the next state as a

function of the current state and the current action of the other

players.) An automaton induces a strategy as follows: The state at the

first stage is the initial state. The state and the actions of the

other players at stage t determine the state at stage t + I (by the

transition function). The state determines the one-shot game strategy

(by the action function). The size of an automaton is the number of

states it has. The complexity of a strategy is defined as the size of

the minimal automaton that can implement it. The main result is that in

a zero-sum game, when the size of the automata of both players go

together to infinity the sequence of values converges to the value of

the one-shot game. This is true even if the size of the automata of one

player is a polynomial of the size of the automata of the other player.

This means that a player can gain something from being able to use

strategies which are more complicated than the strategies of his

opponent, only if his strg+pgies are much more complinated. The result

for the zero-sum games gives an estimation for the general case.

The idea of using a finite automaton in order to distinguish between

simple and complicated strategies was proposed by Aumann [1981]. In two

recent works Neyman [1985] and Rubinstein [1985] used the notion of a
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finite automaton to explore the issue of strategic complexity in

repeated games. Neyman shows that in the finitely repeated prisoners

dilemma, putting a bound on the complexity of the strategies can induce

cooperation. Rubinstein in the infinite version, does not restrict the

players to a certain level of complexity, instead players seek to mini-

mize the complexity of their strategies provided they do not decrease

their payoff. This eliminates many of the equilibrium payoffs.

The model in the present study was proposed to me by Neyman.

2. The Model

1 2i
Let G be a zero-sum game G = (S ,S ,r); where S is a finite

1 2
set of actions for players i and r: S x S + R is the payoff func-

tion of player I. Let V(G) denote the value of the game and let

12

maxmin (G) and minrmax (G) denote max 1 1 m in 2 $2r (s ,'s 2  and

min 2 2 max s 1r(s 1s ) respectively.x CS sS

An automaton Ai for player i is a four-tuple <M ,q ,f ,g >

-i MI i i i
where M i is a set, q E M f : M + and

Mi Sj Mi Mi
g: M X + (j * i). M is the set of states of the automaton,

iq is the initial state, fi(qi) is the action the player chooses when

the automaton is at state q and g is the transition function, if

the automaton is at state qi and the other player chooses si the

next state is gi(qi,sJ). An automaton is finite, if the sets of states

is finite. We will consider only finite automata. The size of an

automaton is the number of the states. An automaton of player i
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induces a (pure) strategy in the repeated game as fellows: The action

at stage t is f (qi where q is the state of the automaton at

stage t. The sequence of states is determined inductively by
q --iq ( q s j) where sj is the action of the other player

at stage t. For example consider the game:

L R

T 1 -1

B -1 1

The strategy of player I which begins with T, continues with it as

long as player I chooses L and plays B forever if player II

plays R, is induced by the automaton A = <M,q,f,g>; where

M = {1,2}; q = 1; f(1) = T f(2) = B

g(l,L) = 1 g(1,R) = 2 g(2,L) = g(2,R) = 2.

Given that the automata of the players are A1 and A2  the correspond-

ing strategies in the repeated game determine a sequence of actions and

payoffs. Denote by Rt(A1 ,A 2 ) the payoff at stage t. The payoff when

player I chooses A and player II chooses A2  is defined to be the
limit of the mean2/.

T(1) R(A1 ,A 2 ) = lim Rt(A1 'A2 )

We are interested in the value of the game where each player is

restricted to strategies that can be implemented by an automaton of a

given size.
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Formally, define:

1 11
A = {A IAI is an automaton of size n for player I}n

A2 =A 2 1A2  is an automaton of size m for player III

G =(A,1A,2R).
n,m n m

Thus Gn,m  is the game induced by restricting player I and player II to

strategies that can be implemented by automata of size n and m

respectively. Note that Gn, m  is also a zero-sum game.

I assume without loss of generality that the set of states of an

automaton of size n is {l...,n}. With this identification A and
2

Am are finite. Let k = 'S1 1 and h = IS21 . Then

IA1I = n - k n n and JA = m * hm mmxk .

3. The Asymptotic Behavior of V(G n,m

The main result in this section is that if p(n) is a polynomial

limn. V(Gn,p(n) ) = V(G).

First note that player I can get at least the axmin (G) by

playing constantly the maxmin action. An automaton of size one can

implement this strategy and of course any larger automaton can do it.

Similarly player II can get minmax (G). Thus the following inequal-

ities hold

maxmin (G) V(G n,m) < minmax (G).



-6-

The first result states that for any number n there exists a larger

number m such that V(G n,m) = maxmin G.

First we need a definition and a lemma.

Definition: (a) Ai  is a partial automaton if the transition

function g is a defined on a subset of Mi x Si .

(b) For two partial automata A and A', A' is an

extension of A if its transition function is an extension of the

transition function of A. If A' is an automaton it will be called a

completion of A.

1 1

Lemma (1.1): For every A 1 An there exists a partial automaton,

2 -2 2A of size n such that for any completion A of A

I -2
(2) R(A ,A ) < mxmin G

Proof: Define

h: S 1 S 2

h(s ) = argmrin 2 2 rs s 1

H(as) is the best reaction for player II to the action s of player

I. Denote the different states of A1 by 1,...n} and assume that

the initial state is 1. Define a partial automaton A2 as follows:

2= 1,...,n} q2 = 1 f2(i) = h(f 1 (i)) 1 < i < n
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2
g is a partial function which satisfies

g 2(if (1)) = g (i,f 2(1)) i < i _< n

2

It is easy to see that g can be defined in such a way and that every

completion of A2  satisfies (2).

n2  3 n nxh
Theorem 1: If L(n) > n IA = n• k - n there exists an auto-

maton A C AL(n such that for every A E A Rn R(,A 2) maxmin (G).

2 2We will construct A . Roughly A operates as follows: it

identifies the automaton A and then uses a subautomaton from the type

described in lemma 1.1.

Proof: Let A 11 < A <1A I be an automata of player I. With
1 A2 2

every AA associate n identical partial automata A, ... ,
I1 ,n

from the type defined in lemma 1.1

2 2
The set of states of any two different partial automata A. E A.i,q ~j,r

(i j or q * r) are disjoint. Together they form a partial
2 1

automaton with n 2An1 states. Define the initial state to be the

2

initial state of A2 * Denote this partial automaton by A2. We will

extend the automaton inductively so that the partial automaton at stage

2
p, A will satisfyp

R(A A 2 ) < maxmin (G)
a p

for 1 < s <p
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Define

2 A2A1 =A
1

1 2
Let p > 1 and play Ap+ 1 and A . Let t be the first time that

A "reveals his identity" i.e. the action played by AI - S - is
p+1  p+.1

such that the sequence . is different from the action
1 1

sequences of the automata A1 ...,A . (If such a t doesn't exist
1 p

2 2
define Ap+ 1 = A .)

Denote:

2 2
q 2 - the state of A at stage t.

p

- the state of Ap+1  at stage t + 1 (q is

determined at stage t. )

ai(p + 1) - the index of the automaton which is identical to

I
ApI  but has q + as an initial state.
p+1  t+1

ci(p + 1) - the index of the first copy of the automata

2 2
Aai(pl),1 ... Aai(p+1) that hasn't been used yet.

(Formally ci(p + 1) = min {J there doesn't exist 1 < r < p + 1

such that

ai(r) = ai(p + 1) and ci(r) = j}.)
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The inductive step is to set g 2q21) to the initial state of
(qt~ toteiiilsaef

2
Aai(p+l),ci(p+1)

It is easy to see that this definition is an extension and (1) is

satisfied. Finally define

2 2
A = A 1

IAI

Theorem 2: Let Q(n) be a function which satisfies Q(n) > n and

lim n4 [Q(n)] - 0 then im n V(G ) = V(G).

Proof: For each n we will define a mixed strategy Pn for player

I (i.e. a probability distribution on An ), such that for every

A EA 2P (A ,A 22 > V(G) - e where lim C = 0.
Q(n) A 1) R(A

n

1 2 in

Assume S = {1,...,kl and S = {1,...,h}. Define Q = {SI n •n
1 1 1~

Let w G Q w = Denote by A (A E A the following
n w w n

automaton:

-11 i + 1 < n
M = {1,...,n = , f(i) = wi , g(is) 

Let (pi,...,Pk) be a mixed strategy for player I in the game G, such

k 2
that = P r(i,j) > V(G) for every j • S .  Define a probability

Q
measure on (Qn,2 n) by

Pn(w) = r= P
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The strategy pn of player I in the game GnQ(n) is defined by

Pn (A w) = (w)

We have to show that,

(1) For every e > 0 there exists N(c) such that for every

n > N(c) and for every A C AQ () (1') is satisfied

(1') .Ln(w)R(A wA 2 ) > V(G) -

w GQ
n

It suffices to show that,

(2) for every e > 0 there exists N(E) such that for every
2 2

n > N(E) A CAe aid c E N (2') is satisfied.
Q(n)

(c+1)n
(2') 1' (w) - Rt(A1 A2 ) > V(G) - £

w E n t=con+1
n

2 2 2
Let A C A )(n) and assume M = {1,...,Q(n)}. Let

A 2(p) p = 1,...,Q(n) denote the automaton which is identical to A2

2
but with initial state p. Let q(A ,w,c) denote the state of the

automaton A2  in the stage c * n + 1, when player I chooses A .w



Finally define:

def 1 (c+_) 1 Rn 2 2 ' w ' c ) ) )

(3) X 2  (w) - I Rt(A'A 2 )- Y R RA 1 ,A (q(A
A ,c t=c*n+1 t=1

Note that the left expression in (2') is the expectation of XA 2 , c  To

estimate the expectation and compare it to V(G), we will estimate

(4) In{fW: XA2,c(w) < V(G) - Ej.

The important point in the proof is that the state of A2  in stage

1, I < I < n is determined by the first Z - 1 actions of player I.

Thus, with every action j =1,...,n of player II we can associate a

sequence of random variables (f.il .

1 the action of A2 at stage R

I when it plays against A is j
fj (w) fw

0 otherwise

and fj,, are measurable w.r.t. the algebra which is generated by the

first I - 1 elements.

We now need two lemmas.

Given an automaton A2
, call a sequence w E Q "nice", if the~n

number of times the actions (i,j) are played divided by the number of

times j is played, is 'close' to Pi. Lemma 2.1 says that 'almost'

all the sequences are "nice". Lemma 2.2 states that on a "nice"

sequence the average payoff is 'close' to V(G).
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Lemma 2.1: Let A = fa 1 , ... ,a k  be a finite set. Let (A,2 ,PJ

QA n
be a probability space and let (Q,2 ) be the product space (A,2 ,p)

n n i(w) Let

i.e. Q = A and for every w = (W1 ,...,wn An E= i= P(w).

H be the partial algebra of 2 which is generated by w1,...,wX 1l

H = {,Q}. Let {f j =1,...h... be a set of random variables which

are adapted to (H ) n  (i.e., f is measurable w.r.t.

(0,H,)) and with values in the set [0,1}. Define

1 W: I (wl = ai)(w) * f (w) - - P(ai) f f~(w)l >E

for some 1 < j < h 1 < i < k

There exists b > 0 such that for every b > E > 0

2
en

4(s _2.- k.- h'e

In lemma 2.2 Q and fil refer to {SI n and the indicator

functions of the actions respectively, as defined before Lemma 2.1. let

w(G) denote max 1 S2 2 E-S2 1r(s,s 2 )I"

Lemma 2.2: Define

-w e no n I(w i)(w) f i(w) - I Pi " ()>

e,A2  n .=1

for some 1<j h 1 <i <k
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1n 1 2

If w n - S then V(G) - nt=,Rt(Aw,A ) < W(G) * k ° h * E.

The proofs of the lemmas are in the Appendix.

We can now evaluate (4)

Q(n)
1w: X () <V(G)- e} c u {w: X (w) < V(G)- e}

A 2,c p=l A 2(p),O

E
Let = W(G) -k -h * Note that by lemma 2.2 if w E n - S A2• • A (p)

then X A2(p),(w) > V(G) - e. This and lemma 2.1 imply that for every

p = 1,...,Q(n)

-1 *° n

Sn{W: XA2 (p),O (w ) < V(G) - C1 < n(S1,A2(p) 2 - k - h - e 4

From this

Q(n)

11n1W X 2 (w) < V(G) - } I ) 1nw: X 2 (w) < V(G) - F-
A ,c p=l A (p),O

2

4
< Q(n) * 2 * k - h - e

Since lim -nQ(n) 0, for every '1 > 0
n- n

2

limn Q(n) * 2 0 k & h e 0. Hence for every E > 0 there
2

exists N(E) such that for any n > N(e), A2 E AQ(n) and c G N, (5)

is satisfied.

(5) An{wX A2 (w) < V(G) - L} < e
A c



-14-

Since X 2  are uniformly bounded, i.e. (Vc,Vn,VA2 e A2(n) 1X 2 (w)l
A ,A ,c

W(G)) we get (2).

We have proved lim nc V(G n,Q(n) > V(G). Since Q(n) > n a

similar argument shows that limn V(G n,Q(n) ) < V(G). These

inequalities imply the result.

4. Non Zero-Sum Games

Theorem 2 gives an estimation for the asymptotic behavior of the set

of equilibrium payoffs in an m-person game. Let G be an m-person

game. An automaton for player i is the same as was previously
Mi S-I

defined, except that the transition function is defined on M x s

-i
where S is the set of action tuples of the other players. Let

S(zl,...,zm) denote the set of equilibrium payoffs in the repeated game

when player i is restricted to strategies that can be implemented by

automata of size z i . Let S denote the set of individual rational

payoffs in mixed strategies. Let co G denote the convex hull of the

vectors in the payoff matrix of G. Let y = (yl,...,ym) denote the

vector of maximal payoffs that each player can get regardless of what

the other players do (in mixed strategies). Define

§ = {x: x oG x > y}.

Theorem 3: Let Q2(n),...,Qm(n) be functions such that Q i(n) > n
ln[Q (n)]J

and lim n i(n)] = 0. Then
nS n n

S C im S(n,Q (n),...,Q_(n)) C Ti-m (S(n,Q (n),...,Q (n)) c.
n 2 _ n+= 2 M _



It is easy to see that every rational convex combination of the payoff

vectors in G can be implemented by automata which are large enough.

Player i can get yi by using the strategy that was defined in

Theorem 2. The other players can bring player i down to his

individual rational payoff by using the same type of strategies. The

proofs of the last two claims are similar to the proof of Theorem 2.

omit the details.

Corollary: Let G be a 2-person game and let Q(n) be a function

ln[Q(n)]
that satifies Q(n) > n and lrm 0 0. Then-n-* n

lim S(n,Q(n)) : S :

5. Conclusion

So far we have considered a specific measure of complexity. However

a version of Theorem 2 is true for a large class of measures.

Definition: A function g: N + N is log - polynomial bounded

(henceforth l.p.b.) if there exists a polynomial p such that

ln(g(n)) < p(ln(n)).

Note that every polynomial is a l.p.b.

Consider a complexity measure as a function from the set of

strategies to the natural numbers.

Definition: Two measures of complexity C1 ,C 2 are log - polynomial

equivalent if there exist l.p.b. functions g1 (n) g2 (n) > n such that
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C1 {x: x<n} C {_x: x<g (n)}

C 1 {x: x < n} CC 1
1 Ix xg 2 (n)I

Let C be a complexity measure. G denotes a game that is similar
n,m

to Gnm except that the complexity of the strategies is measured by

C. (So player I, for example, is restricted to strategies that

according to C have a complexity that is less than n.)

Theorem 4: Let C be a complexity measure that is log-polynomial

equivalent to the automata measure and let Q(n) be a l.p.b. function

that satisfies Q(n) > n. Then

lim v(G ) V(G).
n-*w n,Q(n))

Proof: There exists a l.p.b. function g, such that player II is

restricted to strategies that can be implemented by an automaton of

size gl(Q(n)). Since gl and Q are l.p.b. there exists

polynomials p, P2

such that n[gil(Q(n))] < pl[tn(Q(n))] and ln[Q(n)] p 2 [An(n)].

Putting this together gives:

(1) tn[g l1( Q( n ) ) ] I pl[IP2 ( An ( n ) ) ].

There exists a l.p.b. function g2  such that for every x E N that

satisfies g2 (x) < n player I can use any strategy that can be imple-

mented by an automaton of size x. Let m be the largest number such

that m < n and g2(m) < n. We have g2(m) + 1 > n. Since g2 is
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l.p.b. there exists a polynomial P3  such that ln[g 2(m) + i] p 3[In(m)].

Putting together with (1) we get:

An[g 1 (Q~n))] S pl 1 P2 (P3 ( An ( m ) ) "

A composition of polynomials is a polynomial 
hence

P 1 p [A3[ ()] ]]
imM m

Theorem 2 implies lim V(G C ) > V(G).
n+0- n,Q(n)

Since Q(n) > n a similar calculation gives irn V(G ) < V(G).

The last two inequalities imply the result.



APPENDIX

Proof of Lemma 2.1: We will show if f is measurable w.r.t. H then,

%aEA gdv: I I I(wA = a)(w) * f I(w) I ~ P(a) * f 1(w) I > F- 2 e

It is easy to see that this implies the lemma.

Proof: Define

Z I = I(wx = a) - P(a)

Y I= Z *fI

It suffices to show that there exists k > 0 such that

2
-c n

Ci)41w: Ix * I YXI > X - c* n} < 2 * e

We will show that there exists h > 0 which satisfies:

2

(2) idw It ~~ > X * e* n}* e

2
-e n

n2
(3) g{w: X Y I.1  < -X - E * n} e

This implies (1). We will show (2). (3) can be proved in a similar way.

Z i are independent w.r.t. HAit hence E(exp(X * z) H A

E(exp(x * Zt)). Exp, is a convex function therefore:
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(4) 1 = exp(E(K • Zt)) < E(exp(k •Z))

By the Taylor expansion

2 22. ZI2

exp(X . z)= 1 + X ZI + 2 + R( . Zt)

where

R(X Z I1)
lim + 0 - 2 0

x x Z

Hence there exists d > 0 such that if d > X > 0

exp(X . Zt) i li + X .Z + x Z2

which implies

(5) E(exp(X * Z*)) < 1 + X - E(Zt) + X . E(ZZ) < 1 +

Z1,....Z n are i.i.d. from (4) and (5) we have

n2n

1 < E(exp(k • Z)) < (1 + X2 )n

Claim: V I < A < n

(6) E(exp(k - Yt) I Ht) _ E(exp(X • ZI) I Hj) = E(exp(X •Z)

Proof: When fI = I Y Z. When f, = 0 Y = 0 and thus the

left expression equals one while the right expresson is greater than or

equal to one.

Claim: J < j < n

J J

(7) E(exp(x Yt)) < E(exp(• Z))
U=1 1
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Proof: By induction. For j = 1 the claim follows from (6).

Let j > 1
j j-1

E(exp(X * Yj)) = E(E(exp(X Yt . exp (X Y.)IH.)

since Ij1Y is measurable w.r.t. H.

- E(exp(k • YJ " E(exp(x • Y JjIH))
X=1

j-1

E(exp(X * Zj) E(exp(x • I Y )) by (6)

j-1
E(exp(X * Z E(exp(X - Z )) by the induction hypothesis

- E(exp(- I Z,)) since Zl,...,Z. are i.i.d.

From (7) and (5) we get

n

E(exp( • x Y)< (1 + 2) n

,t=1

By Chebychev inequality

n

pj: X . I I X - e* ni 0 exp(X * e n) (+ .2

n
X 0 " Y > X - E n< (i + . exp(-x e . n)

-t=
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2
-e nE - s

For X = - the right expression is less than e (since
2

n n

(1 X X2 )n < e ), hence for 0 < e < 2d (d is the constant derived

from the Taylor expansion of Exp) (2) is satisfied.

Proof of Lemma 2.2: Denote:

A ij(w) - the number of times (i,j) was played

x (w) - the number of times A2  played j. xj(w) = _k~l. .(w).

From the definitions

n

I *(w) - I(w =i)(w) f j(W)

n

x (W) P = P P • f j(w)

Hence if w e Q - S then for every 1 < i < k 1 < j < hn E, 2 . .. .-

x W P il < n- -w(w)
Ix.(w) j'' - .w

From this

x.(W) k I (W) n

n w r(i,j)- P. P j))li=1 xj(w) i=1

x.(w) k A (w) ) <  (

I . I -Pile I r(i,j)j k W(G)-- n 1=1 xj~w)

k
For every 1 < j £ h P " r(i,j) > V(G)

i=1

Hence summing over j gives the result.
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FOOTNOTES

1/ I prefer not to use the term "bounded rationality" here, since it
has been used as a name for a large class of limitations. For

example partial information of possible actions or of consequences

of a given action has also been referred to as "bounded rational-

ity" even when there is no computation that will give additional
information.

2/ Since the set of the states of each automaton is finite the
automata enter a cycle, i.e. there exists numbers c,

1 2 12 1 2
k< MI MI such that forevery t>c (q itq ) (q ,q
and so the limit (1) exists.tt tktk



-23-

REFERENCES

Aumann, R. [1981], "Survey of Repeated Games," in Essays in Game Theory

and Mathematical Economics in Honor of Oskar Morgenstern,

Bibliographsches, Institut, Zurich, pp. 11-42.

Neyman, A. (1985], "Bounded Complexity Justifies Cooperation 
in the

Finitely Repeated Prisoners' Dilemma," Economic Letters 19, pp.

227-229.

Rubinstein, A. [19861, "Finite Automata Play - The Repeated Prisoners'

Dilemma," Journal of Economic Theory 39, pp. 83-96.

Simon, H. [19573, Models of Man, John Wiley & Sons.

Simon, H. [1972], "Theories of Bounded Rationality" in Decision and

Organization, ed. by C. McGuire and R. Radner, North-Holland,

Amsterdam.


